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ABSTRACT

This memorandum..is the first quarterly progress report pre-
pared for the Astrodynamics and Guidance Theory Division, Aero-
Astrodynamics Laboratéry, NASA George C. Marshall Space Flight
Center under Contract NAS 8-20306, "Study on Determining Sta-
bility Domains for Nonlinear Dynamical Systems.” It reports the

work performed during the period 1 May 1966 to 1 August 1966.

The procedure for formulating the problem of estimating the
domain of attraction of an equilibrium solution of a nonlinear
dynamical system as two extremal problems is briefly described.
The numerical algorithm used to solve these extremal problems
is outlined, and the qualitative aspects of the computational
results are described. Some remaining problems are described

and the plans for future work are stated.
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INTRODUCTION

During the period covered by this report, our effort has been
devoted toward developing the procedure, described in Ref. 1, for
estimating the domain of attraction of equilibrium motions of non-

linear dynamical systems.



REVIEW OF PROBLEM FORMULATION

Briefly, the procedure described in Ref. 1 is based upon
choosing the quadratic form Liapunov function that yields the
largest estimate of the domain of attraction for the given motion
and system of equations. 1In particular, assume that the system

is of the form

/ R
X = Ax + f(x) s X = . / s £(0) =0 , A stable ; (1)
n

X

i.e., it is n-dimensional, autonomous, quasi-linear, and stable.
As a result of these assumptions the Liapunov function V,
T
V() = xPx s P>0, (2)
will have as its time derivative

V() = - xTgx + 2xTPE(x) , (3)

where
T
-Q=AP+PA. (4)
If Q 1is chosen to be positive definite, them P will be posi-

tive definite and V will be negative in the region

lEe] anin () ),

D: (Xl HXH ZKmax(P)

(5)

where kmln(Q) and A2 (P) are, respectively, the minimum eigen-

value of Q and the maximum eigenvalue of P.



According to LaSalle and Lefschetz (Ref. 2) an estimate of the
domain of attraction of the equilibrium solution x(t) = 0 of

*
Eq. (1) is given by

o (xIve) < 2, Ve < 0) (6)

if Qz is bounded. Thus, relative to this choice of V(x), i.e.,

the choice of Q, the best estimate is obtained by defining the
set E as

E: (le(x) =0, x ¢ 0) @)
and then choosing £ to be

£ = min V(x) . (8)
x € E

Then, the optimal choice of Q from the set of all positive

definite n x n matrices, denoted QO, is defined by

3@ = max JQ , (9)
Q>0

where

n 1
/2 (| "z £
n
= A =
3@ = M (N v®) "= (5r7) - (10)
i=1
This definition of QO [Eq. (9) ] will yield the best estimate in
terms of enclosed volume, of the domain of attraction under the

constraint that V(x) be a positive definite quadratic form.

*
N.B. Hereafter it will be understood that we are concerned with

the equilibrium solution x(t) = 0 of Eq. (1).




Thus an optimal estimate of the domain of attraction with respect

to quadratic form Liapunov functions can be obtained via a numeri-

cal algorithm that solves Eqs. (8) and (9). Our efforts during

the past quarter have been concentrated on the development of such

an algorithm.



DEVELOPMENT OF THE NUMERICAL ALGORITHM

To solve the constrained minimum problem we have formulated
an unconstrained minimum problem by using the penalty function

technique; i.e., replace Eq. (8) by

{ = min J‘V(x) + sz(x)HxH-m} , (11)
< |
where k > 0 is chosen to assure satisfaction of the constraint

V(x) = 0 to some prescribed accuracy, and m is chosen to be

the least positive even integer such that

lim VZ@)llx| ™ = w . (12)
x =0
The term ||x|| " was originally introduced to exclude the trivial
solution x = 0, which is the global minimum of the problem for
m = 0; however, this term also modifies the function to be mini-
mized for large |/x|| in such a way as to de-emphasize the penalty
term. In order to ‘avoid this undesirable effect we formulated

another unconstrained problem, viz,

£ = min JV(x) + k&z(x)g(x)} R (13)

x |
where g(x) was chosen to be
g(x) = (L+clxl™ . (14)

Again, m is chosen as above, and ¢ > 0 1is chosen to appro-
priately limit the region within which g(x) materially affects

the penalty term of Eq. (13).



constrained problem as follows.

Equation (9) can also be reformulated as a more tractable
As is well known, the canonical

form for the set of positive definite symmetric matrices is the
diagonal matrix with positive eigenvalues. Thus, we form the

arbitrary positive definite matrix Q via

Q = RUR , (15)

where R 1is an arbitrary unitary transformation; i.e.,

RR =1, (16)
A @
0
A= L , (17)
0
@)

and Ki(Q) >0 for i=1, 2, ..., n. (Usually Kl(Q) will be

normalized to unity.) This formulation obviates the necessity to

apply the Sylvester criterion to
is readily resolved for n = 2, viz,

Q at every iteration. The

problem of generating R

cos O sin ¢ |
(18)

- sin 6 cos O

We conjecture that for n > 2, R can be represented as a product

of rotation matrices, i.e.,

(19)



where

¢ i
}
1 0 - ‘\
- . 0 0 4
G 1 .
ieeef ¢« ¢ o ¢ o o coOs O ~—si:x_l—ej- S —;
p ; = »
R, = - | 3 (20)
- 0 ~-sin 0, cos 6. 0 :
i1 0
0 0 * .
| 0 1

>~ This conjecture is based upon the consideration that in essence we
are attempting to scale and rotate an n-dimensional ellipsoid to

fit the domain of attraction in some sense, such that all initial

points within the ellipsoid produce trajectories that never leave

it. That is, we are attempting to tailor the ellipsoid to the

domain of attraction and the "flow" in the state space.
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NUMERICAL ALGORITHM FOR MINIMUM PROBLEMS

The numerical algorithm being used to compute solutions to
Eq. (11) or Eq. (13), and Eq. (9), is being developed at Grumman
by McGill and Taylor and is based upon the work of Davidon (Ref. 3)
and Fletcher and Powell (Ref. 4). The algorithm is based upon a

modified gradient search concept and proceeds as follows.

To find the minimum over all x of f(x), where xT =

(%75 «+., x) and f£f(x) 1is a scalar function, choose an initial
1 n
point X4 and an arbitrary n x n positive definite symmetric

matrix Hy (e.g., the identity matrix). Then, let

1

S = T kak , (21)
where
T
! of of
£ = (Bxl’ e axn) » (22)

and find . > 0 such that f(xk + aksk) is minimum with respect

to a Now, let

-
Xprl = ¥ T Sy o (23)

' .
and compute f(xk+1) and £ (xk+1). Define

S T (24)
and then compute Hk+l as follows
Hk+l = Hk + Ak + Bk R (25)




. where
-1

_ T 2 T
Ak = (akskyk) a8, 8 (26)
and
T -1 T
B =~ 1y By - (27)
This procedure is repeated until
(28)

Iy Xl <€, 0<el.




|

RESULTS OF NUMERICAI, EXPERIMENTS

The numerical experiments to date have dealt primarily with
the solution of Eqs. (11) and (13), via the algorithm just de-

scribed, for the damped Duffing equation, viz,

(29)

: 3
= - ¥ - (
x X, xl + O.J4x1

Although this system of equations is not directly related to the
booster guidance stability problem, it is an example for which £
can be obtained analytically, and moreover, QO can be calculated
analytically (see Ref. 1). Thus it is a good example for determin-
ing the accuracy of the numerical results. Because this example

is not directly related to the goal of this study, the qualitative
results are of more importance than the quantitative results, and

the latter will be omitted from this discussion.

The functions that are to be minimized in Eqs. (11) and (13)
have, for this example, four local minima; two are introduced by
the modification that removes the global minimum, and two are the
sought solutions to the estimation problem (the problem has point
symmetry about the origin). As a result, the value computed by
the minimization algorithm depends on the initial search point.
Thus, although the known global minimum has been removed, two un-
known local minima have been introduced, and the sensitivity of
the solution to the initial point has not really been reduced.
This problem is even more acute for the Van der Pol equation

X, = X,

] 9 (30)
X, = = x2(1 - xl) - X

10




because the function to be minimized has one global minimum and
four local minima for m = 0. Thus a problem requiring further
consideration is that of the existence of many local minima and
the resulting dependence of the solution upon the initial search

point.

As indicated in Ref. 1, the algorithm did not converge satis-
factorily in the neighborhood of the optimal value of Q. This is
attributed to the fact that

1 0
QY =< , (31)
0 0

and is thus semidefinite; i.e., the optimal value is on the bound-
ary of the allowable set of Q matrices. We have made changes in
the logic in our program, which has enabled us to compute £ suc-
cessfully for Q matrices close to QO; however, this problem

may arise again when we try to compute Q0 numerically.

We have programmed and are debugging a program which will
compute Q0 and £ for the Duffing equation; 1i.e., it determines
£ for an initial Q and then iterates on the AN and © of
Eqs. (17) and (18) until (J(Q)>_l is minimized. The program has
successfully computed to the boundary of the allowed set of Q's,
but has as yet not been able to follow this boundary to QO. En-

abling modifications are now in process.
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PLANS FOR FUTURE WORK

In view of the results obtained to date together with discus-

¢.ons with Mr. C. C. Dearman, Jr. of NASA Huntsville, we plan to

focus our efforts on the rollowing areas:

1.

Devising a procedure for computing an initial
search point on the V(x) = 0 constraint in
order to eliminate the sensitivity to the ini-~

tial search point.

Reformulating the problem for determining £
such that the desired value occurs as the
global minimum of the function to be mini-

mized.

Formulating examples that are representative

of the booster guidance stability problem.

Developing techniques for estimating the
temporal behavior of the function V(x) so
that relations between the initial state
error Hx(to)ﬂ and the error at some later
time, |x(t)| ty < t < =, can be drawn.
(Note that our present results are for
infinite operating periods, while booster
problems always concern finite operating

periods.)

Proving our conjecture concerning the repre-
sentation of the unitary transformation,
Egs. (19) and (20), and developing an effi-
cient procedure for solving the Liapunov

equation, Eq. (4).
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